Estimating Epidemic Severity Rates Jeremy Goldwasser

Time-varying severity rates in epidemiology

- Severity rates express the probability that a primary event at time t will result in serious secondary event, e.g.
 - Case-fatality rate (CFR)
 - Hospitalization-fatality rate (HFR)
- Time-varying or stationary?
 - Most academic work on estimating severity rates assumes stationarity over time.
 - Severity rates constantly change due to new variants, therapeutics, etc.
 - Epidemiologists at the CDC use time-varying rates to analyze new risks.

How Many Americans Are About to Die?

A new analysis shows that the country is on track to pass spring's grimmest record.

By Alexis C. Madrigal and Whet Moser

IE WALL STREET JOURNAL.

Business U.S. Politics Economy Tech Markets & Finance Opinion Arts Lifestyle Real Estate Personal Finance

Winter Warning

July 2020

Aua

The U.S. case fatality rate calculated with a 22-day lag between reported cases and deaths points to wave of new fatalities ahead Day before Thanksgiving

Oct.

Nov.

Sept

Often estimate severity from aggregate data

- Calculating severity rates is straightforward with a line list of patient outcomes.
 - CFR: Observe fraction of patients that tested positive at t who ultimately die.
- Maintaining such a line list may be unrealistic or impossible
 - In this case, severity rates must be estimated from aggregate count data.

– Deaths – Hospitalizations

Standard ratio estimators

- Most estimators for severity rates are simple ratios ("case fatality ratio") between secondary events and at-risk primary events
- The standard time-varying approach is a lagged ratio of aggregate counts:

$$\widehat{\text{CFR}}_t = \frac{\text{Deaths at } t}{\text{Cases at } t - \ell}$$

• A more principled generalization uses the delay distribution:

 $\widehat{\text{CFR}_t} = \frac{\text{Deaths at } t}{\sum_k \{\text{Cases at } t - k\} \times \widehat{\mathbb{P}}(\text{Death is at } k \text{ days})}$

Our work: Understanding the bias of these ratios and proposing statistically sound alternatives.

Observed these ratios exhibit huge bias

Notable failures, HFR:

- Signaled enormous, nonexistent surge after Omicron peak – especially lagged ratio.
- Ignored higher risk as Delta took over

Findings robust across parameters, geography, etc.

- Approx. GT ---- Conv. Estimate --- Lagged Estimate

Ingredients of Analysis: Data Streams

- Let X_t denote the primary incidence time series
- Let Y_t denote the secondary incidence time series.
 - We focus on HFR because there is decent ground truth data.
- In theory, they have the following relation:

$$Y_t | X_{s \le t} = \sum_{k=0}^d \sum_{i=1}^{x_{t-k}} \mathbf{1}\{i^{\text{th}} \text{ case at } t-k \text{ died at } t\}$$

• In practice, real-world data may be messier due to e.g. day-of-week effects or data dumps.

Ingredients of Analysis: Statistical Model

• Given
$$Y_t|X_{s\leq t} = \sum_{k=0}^d \sum_{i=1}^{x_{t-k}} \mathbf{1}\{i^{\text{th}} \text{ case at } t-k \text{ died at } t\}$$

• Taking expectation reveals convolution of hospitalizations with delay distribution π and HFRs p:

$$\{\text{Deaths at } t\} := \sum_{k} \{\text{Hospitalizations at } t - k\} \\ \times \mathbb{P}(\text{Die in } k \text{ days}) \\ = \sum_{k} \{\text{Hospitalizations at } t - k\} \\ \times \mathbb{P}(\text{Die in } k \text{ days } | \text{ Die}) \\ \times \mathbb{P}(\text{Die } | \text{ Hospitalized at } t - k) \\ = \sum_{k} X_{t-k} \pi_{k} p_{t-k}$$

Recreate bias on simulated data

$$\hat{p}_t^{\text{Lagged}} = \frac{Y_t}{X_{t-\ell}}$$
$$\hat{p}_t^{\text{Conv}} = \frac{Y_t}{\sum_{k=0}^d X_{t-k} \pi_k}$$

- Noiseless simulation, so $Y_t = E[Y_t/X_{s \le t}]$ from the previous slide
- Even when hospitalizations are flat, the estimated HFR is up to 50% too high!

Ground truth ···· Oracle convolutional ratio ··· Lagged ratio

Well-specified analysis

For a stationary oracle delay distribution π ,

Bias of Convolutional Ratio with True Delay Distribution

- A. Arises due to changing severity rates p
- B. Affected by changing primary incidence Xa. Usually falling \rightarrow more bias
- C. Exacerbated by heavy-tailed delay distr. π

Misspecified analysis

For oracle delay distribution π , misspecified estimate γ , and $A_t^{\gamma} = \frac{\sum_{j=0}^d X_{t-j}\pi_j}{\sum_{j=0}^d X_{t-j}\gamma_j},$

$$\operatorname{Bias}\left(\hat{p}_{t}^{\gamma}\right) = A_{t}^{\gamma}\operatorname{Bias}\left(\hat{p}_{t}^{\pi}\right) + p_{t}\left(A_{t}^{\gamma}-1\right)$$

Bias of Convolutional Ratio with Misspecified Delay Distribution γ

- Arises as a consequence of changing primary incidence.
- Heuristics for lagged ratio:
 - a. Too high during rise
 - b. Too low during fall
 - c. Too high after leveling out

State-level results

- We estimate HFRs on JHU, which uses deaths aligned by report date – not the date the actually occurred.
- Longer reporting delays → heavier-tailed delay distribution → more bias (well-specified)
- Convolutional ratio consistently outperforms lagged ratio, which again is
 - a. Too high during rise
 - b. Too low during fall
 - c. Too high after leveling out

Ratio estimates and approximate ground truth

New York Mean delays of 12 (NCHS) and 13 (JHU)

Approximate GT ···· Convolutional ratio ··· Lagged ratio

Follow-up work: Improving severity estimation

- Currently, we are developing a new method that avoids these biases.
- Instead of obtaining only the current severity rate, our approach estimates the curve *over all time*, then takes the most recent prediction.
 - We approximate maximum likelihood estimation on a faithful probabilistic model, using modern smoothing techniques for stability.
- Preliminary results demonstrate large improvements on retrospective analysis; we have yet to test its efficacy in the real-time setting.

Collaborators

Thanks for your attention!